Loading…
Assessment of statistic analysis in non-radioisotopic local lymph node assay (non-RI-LLNA) with α-hexylcinnamic aldehyde as an example
The murine local lymph node assay (LLNA) is used for the identification of chemicals that have the potential to cause skin sensitization. However, it requires specific facility and handling procedures to accommodate a radioisotopic (RI) endpoint. We have developed non-radioisotopic (non-RI) endpoint...
Saved in:
Published in: | Toxicology (Amsterdam) 2003-09, Vol.191 (2), p.259-263 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The murine local lymph node assay (LLNA) is used for the identification of chemicals that have the potential to cause skin sensitization. However, it requires specific facility and handling procedures to accommodate a radioisotopic (RI) endpoint. We have developed non-radioisotopic (non-RI) endpoint of LLNA based on BrdU incorporation to avoid a use of RI. Although this alternative method appears viable in principle, it is somewhat less sensitive than the standard assay. In this study, we report investigations to determine the use of statistical analysis to improve the sensitivity of a non-RI LLNA procedure with α-hexylcinnamic aldehyde (HCA) in two separate experiments. Consequently, the alternative non-RI method required HCA concentrations of greater than 25% to elicit a positive response based on the criterion for classification as a skin sensitizer in the standard LLNA. Nevertheless, dose responses to HCA in the alternative method were consistent in both experiments and we examined whether the use of an endpoint based upon the statistical significance of induced changes in LNC turnover, rather than an SI of 3 or greater, might provide for additional sensitivity. The results reported here demonstrate that with HCA at least significant responses were, in each of two experiments, recorded following exposure of mice to 25% of HCA. These data suggest that this approach may be more satisfactory—at least when BrdU incorporation is measured. However, this modification of the LLNA is rather less sensitive than the standard method if employing statistical endpoint. Taken together the data reported here suggest that a modified LLNA in which BrdU is used in place of radioisotope incorporation shows some promise, but that in its present form, even with the use of a statistical endpoint, lacks some of the sensitivity of the standard method. The challenge is to develop strategies for further refinement of this approach. |
---|---|
ISSN: | 0300-483X 1879-3185 |
DOI: | 10.1016/S0300-483X(03)00255-5 |