Loading…
Estimation of random fields by piecewise constant estimators
The problems of designing the efficient sampling designs for estimation of random fields by piecewise constant estimators are studied, which is done asymptotically, namely, as the sample size goes to infinity. The performance of sampling designs is measured by the integrated mean-square error. Here,...
Saved in:
Published in: | Stochastic processes and their applications 1997-11, Vol.71 (2), p.145-163 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The problems of designing the efficient sampling designs for estimation of random fields by piecewise constant estimators are studied, which is done asymptotically, namely, as the sample size goes to infinity. The performance of sampling designs is measured by the integrated mean-square error. Here, the sampling domain is properly partitioned into a number of subregions, and each subregion is further tessellated into regular diamonds when the covariance is a function of
L
1 norm, or regular hexagons if it is a function of
L
2 norm. The sizes of the regular diamonds or hexagons are determined by a density function. It turns out that if the density function is properly chosen, the centers of these diamonds or hexagons, as sampling points, are asymptotically optimal. Examples with Gaussian, a distorted Ornstein-Uhlenbeck and a non-product-type covariance are considered. |
---|---|
ISSN: | 0304-4149 1879-209X |
DOI: | 10.1016/S0304-4149(97)00081-1 |