Loading…
Uniform decay rates of the solutions of a nonlinear lattice
We consider a family of finite nonlinear Klein–Gordon lattices subject to cyclic boundary conditions under the effect of a dissipative mechanism. We show that the model is globally well posed in a natural Banach space and our main result says that the total energy associated with the model decays ex...
Saved in:
Published in: | Nonlinear analysis 2003-07, Vol.54 (2), p.261-278 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We consider a family of finite nonlinear Klein–Gordon lattices subject to cyclic boundary conditions under the effect of a dissipative mechanism. We show that the model is globally well posed in a natural Banach space and our main result says that the total energy associated with the model decays exponentially fast when
t→+
∞
. |
---|---|
ISSN: | 0362-546X 1873-5215 |
DOI: | 10.1016/S0362-546X(03)00061-0 |