Loading…
A stable elemental decomposition for dynamic process optimization
In Cervantes and Biegler (A.I.Ch.E.J. 44 (1998) 1038), we presented a simultaneous nonlinear programming problem (NLP) formulation for the solution of DAE optimization problems. Here, by applying collocation on finite elements, the DAE system is transformed into a nonlinear system. The resulting opt...
Saved in:
Published in: | Journal of computational and applied mathematics 2000-08, Vol.120 (1), p.41-57 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In Cervantes and Biegler (A.I.Ch.E.J. 44 (1998) 1038), we presented a simultaneous nonlinear programming problem (NLP) formulation for the solution of DAE optimization problems. Here, by applying collocation on finite elements, the DAE system is transformed into a nonlinear system. The resulting optimization problem, in which the element placement is fixed, is solved using a reduced space successive quadratic programming (rSQP) algorithm. The space is partitioned into range and null spaces. This partitioning is performed by choosing a pivot sequence for an LU factorization with partial pivoting which allows us to detect unstable modes in the DAE system. The system is stabilized without imposing new boundary conditions. The decomposition of the range space can be performed in a single step by exploiting the overall sparsity of the collocation matrix but not its almost block diagonal structure. In order to solve larger problems a new decomposition approach and a new method for constructing the quadratic programming (QP) subproblem are presented in this work. The decomposition of the collocation matrix is now performed element by element, thus reducing the storage requirements and the computational effort. Under this scheme, the unstable modes are considered in each element and a range-space move is constructed sequentially based on decomposition in each element. This new decomposition improves the efficiency of our previous approach and at the same time preserves its stability. The performance of the algorithm is tested on several examples. Finally, some future directions for research are discussed. |
---|---|
ISSN: | 0377-0427 1879-1778 |
DOI: | 10.1016/S0377-0427(00)00302-2 |