Loading…
An integral hidden in Gradshteyn and Ryzhik
We provide a closed-form expression for the integral N 0,4(a;m):= ∫ 0 ∞ dz (z 4+2az 2+1) m+1 where m ∈ N and a ∈ (−1,∞): N 0,4(a;m)= π 2 m+3/2(a+1) m+1/2 P m m+1/2,-m-1/2)(a) = π 2 3m+ 3 2 (a+1) m+ 1 2 x ∑ k=0 m 2k 2m−2k m−k m+k m (a + 1) k . Here P m (m+ 1 2 ,−m− 1 2 ) (a) is the Jacobi polynomial...
Saved in:
Published in: | Journal of computational and applied mathematics 1999-06, Vol.106 (2), p.361-368 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We provide a closed-form expression for the integral
N
0,4(a;m):=
∫
0
∞
dz
(z
4+2az
2+1)
m+1
where
m ∈
N
and
a ∈ (−1,∞):
N
0,4(a;m)=
π
2
m+3/2(a+1)
m+1/2
P
m
m+1/2,-m-1/2)(a)
=
π
2
3m+
3
2
(a+1)
m+
1
2
x
∑
k=0
m
2k
2m−2k
m−k
m+k
m
(a + 1)
k
. Here
P
m
(m+
1
2
,−m−
1
2
)
(a)
is the Jacobi polynomial
P
m
(
α,
β)
(
a) with parameters
α=m+
1
2
and
β=−(m+
1
2
)
. |
---|---|
ISSN: | 0377-0427 1879-1778 |
DOI: | 10.1016/S0377-0427(99)00081-3 |