Loading…

Tsallis thermostatistics for finite systems: a Hamiltonian approach

The derivation of the Tsallis generalized canonical distribution from the traditional approach of the Gibbs microcanonical ensemble is revisited (Phys. Lett. A 193 (1994) 140). We show that finite systems whose Hamiltonians obey a generalized homogeneity relation rigorously follow the nonextensive t...

Full description

Saved in:
Bibliographic Details
Published in:Physica A 2003-05, Vol.322, p.276-284
Main Authors: Adib, Artur B., Moreira, André A., Andrade Jr, José S., Almeida, Murilo P.
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The derivation of the Tsallis generalized canonical distribution from the traditional approach of the Gibbs microcanonical ensemble is revisited (Phys. Lett. A 193 (1994) 140). We show that finite systems whose Hamiltonians obey a generalized homogeneity relation rigorously follow the nonextensive thermostatistics of Tsallis. In the thermodynamical limit, however, our results indicate that the Boltzmann–Gibbs statistics is always recovered, regardless of the type of potential among interacting particles. This approach provides, moreover, a one-to-one correspondence between the generalized entropy and the Hamiltonian structure of a wide class of systems, revealing a possible origin for the intrinsic nonlinear features present in the Tsallis formalism that lead naturally to power-law behavior. Finally, we confirm these exact results through extensive numerical simulations of the Fermi–Pasta–Ulam chain of anharmonic oscillators.
ISSN:0378-4371
1873-2119
DOI:10.1016/S0378-4371(02)01601-1