Loading…
A numerical investigation of Schwarz domain decomposition techniques for elliptic problems on unstructured grids
We consider a parallel implementation of the additive two-level Schwarz domain decomposition technique. The procedure is applied to elliptic problems on general unstructured grids of triangles and tetrahedra. A symmetric, positive-definite system of linear equations results from the discretization o...
Saved in:
Published in: | Mathematics and computers in simulation 1997-11, Vol.44 (4), p.313-330 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We consider a parallel implementation of the additive two-level Schwarz domain decomposition technique. The procedure is applied to elliptic problems on general unstructured grids of triangles and tetrahedra. A symmetric, positive-definite system of linear equations results from the discretization of the differential equations by a standard finite-element technique and it is solved with a parallel conjugate gradient (CG) algorithm preconditioned by Schwarz domain decomposition. The two-level scheme is obtained by augmenting the preconditioning system by a coarse grid operator constructed by employing an agglomeration-type algebraic procedure. The algorithm adopts an overlap of just a single layer of elements, in order to simplify the data-structure management involved in the domain decomposition and in the matrix-times-vector operation for the parallel conjugate gradient. Numerical experiments have been carried out to show the effectiveness of the procedure and they, in turn, show how even such a simple coarse grid operator is able to improve the scalability of the algorithm. |
---|---|
ISSN: | 0378-4754 1872-7166 |
DOI: | 10.1016/S0378-4754(97)00062-1 |