Loading…
Undecidability of domino games and hhp-bisimilarity
History preserving bisimilarity (hp-bisimilarity) and hereditary history preserving bisimilarity (hhp-bisimilarity) are behavioural equivalences taking into account causal relationships between events of concurrent systems. Their prominent feature is that they are preserved under action refinement,...
Saved in:
Published in: | Information and computation 2003-08, Vol.184 (2), p.343-368 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | History preserving bisimilarity (hp-bisimilarity) and hereditary history preserving bisimilarity (hhp-bisimilarity) are behavioural equivalences taking into account causal relationships between events of concurrent systems. Their prominent feature is that they are preserved under action refinement, an operation important for the top-down design of concurrent systems. It is shown that, in contrast to hp-bisimilarity, checking hhp-bisimilarity for finite labelled asynchronous transition systems is undecidable, by a reduction from the halting problem of 2-counter machines. To make the proof more transparent a novel intermediate problem of checking domino bisimilarity for origin constrained tiling systems is introduced and shown undecidable. It is also shown that the unlabelled domino bisimilarity problem is undecidable, which implies undecidability of hhp-bisimilarity for unlabelled finite asynchronous systems. Moreover, it is argued that the undecidability of hhp-bisimilarity holds for finite elementary net systems and 1-safe Petri nets. |
---|---|
ISSN: | 0890-5401 1090-2651 |
DOI: | 10.1016/S0890-5401(03)00064-6 |