Loading…

Vaporizing liquid microthruster

MEMS technology is expanding into increasingly diverse applications. As part of a micropropulsion system, microthruster attitude controls have been micromachined in silicon. This paper presents the microthruster design, fabrication, and test results. Fluid injected into a microchamber is vaporized b...

Full description

Saved in:
Bibliographic Details
Published in:Sensors and actuators. A. Physical. 2000-05, Vol.83 (1), p.231-236
Main Authors: Mukerjee, E.V, Wallace, A.P, Yan, K.Y, Howard, D.W, Smith, R.L, Collins, S.D
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:MEMS technology is expanding into increasingly diverse applications. As part of a micropropulsion system, microthruster attitude controls have been micromachined in silicon. This paper presents the microthruster design, fabrication, and test results. Fluid injected into a microchamber is vaporized by resistive silicon heaters. The exiting vapor generates the thruster force as it exits a silicon micro-nozzle. The vaporization chamber, inlet and exit nozzles were fabricated using anisotropic wet etching of silicon. With a 5 W heater input, injected water could be vaporized for input flow rates up to a maximum of 0.09 cc/s. Experimental testing produced thruster force magnitudes ranging from 0.15 mN to a maximum force output of 0.46 mN depending on fabrication parameters: chamber length, nozzle geometries, heater power, and liquid flow rates.
ISSN:0924-4247
1873-3069
DOI:10.1016/S0924-4247(99)00389-1