Loading…
A fast multipole boundary integral equation method for crack problems in 3D
This paper discusses a three-dimensional fast multipole boundary integral equation method for crack problems for Laplace's equation. The proposed implementation uses collocation and piecewise constant shape functions to discretise the hypersingular boundary integral equation for crack problems....
Saved in:
Published in: | Engineering analysis with boundary elements 1999, Vol.23 (1), p.97-105 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This paper discusses a three-dimensional fast multipole boundary integral equation method for crack problems for Laplace's equation. The proposed implementation uses collocation and piecewise constant shape functions to discretise the hypersingular boundary integral equation for crack problems. The resulting numerical equation is solved with GMRES (generalised minimum residual method) in connection with FMM (fast multipole method). It is found that the obtained code is faster than a conventional one when the number of unknowns is greater than about 1300. |
---|---|
ISSN: | 0955-7997 1873-197X |
DOI: | 10.1016/S0955-7997(98)00065-4 |