Loading…

Microstructural characterization and dry sliding wear behavior of spark plasma sintered Cu-YSZ composites

In the present study, yttria stabilized zirconia (YSZ) reinforced Cu matrix composite specimens were produced by spark plasma sintering (SPS). For comparison, pure Cu specimen was also produced in the same conditions. The effect of particles content on microstructure, relative density, electrical co...

Full description

Saved in:
Bibliographic Details
Published in:Transactions of Nonferrous Metals Society of China 2016-07, Vol.26 (7), p.1745-1754
Main Authors: MIRAZIMI, Jafar, ABACHI, Parvin, PURAZRANG, Kazem
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In the present study, yttria stabilized zirconia (YSZ) reinforced Cu matrix composite specimens were produced by spark plasma sintering (SPS). For comparison, pure Cu specimen was also produced in the same conditions. The effect of particles content on microstructure, relative density, electrical conductivity, and Vickers hardness was evaluated. The pin-on-disk test was also performed to determine dry sliding wear behavior of specimens under different wear conditions. After sliding wear tests, the worn surfaces were examined by field emission scanning electron microscopy (FE-SEM). Microstructural study showed satisfactory distribution of reinforcement particles in copper matrix. The relative density up to 95% was obtained for all specimens. By increasing YSZ content from 0 to 5% (volume fraction), the electrical conductivity of specimens decreased from 99.2%IACS to 65%IACS, correspondingly. The hardness of Cu-5%YSZ composite specimen was two times greater than that of pure copper. The volume loss and wear rate of pure Cu specimen were 1.48 mm3 and 1.5×10−3 mm3/m under 50 N applied load and 1000 m sliding distance. However, for composite containing 5% YSZ particles, these values dropped to 0.97 mm3 and 0.9×10−3 mm3/m, respectively. Moreover, the friction coefficient of specimens was changed from 0.6 to 0.4. The worn surface and debris observation indicate local plastic deformation and delamination as dominant wear mechanisms for pure copper, while oxidation and ploughing for composite specimen. Accordingly, it can be concluded that the Cu-YSZ composite could be a good candidate for the electrical contact applications in relays, contactors, switches and circuit breakers requiring good electrical and thermal conductivity and capability to resist wearing.
ISSN:1003-6326
DOI:10.1016/S1003-6326(16)64289-9