Loading…

The effect of azide on the photocycle of bacteriorhodopsin

Azide has previously been shown to have an effect on the photocycle of bacteriorhodopsin mutants. In appropriate mutants, both the proton release from the Schiff base and reprotonation are accelerated. However, no effect on native bacteriorhodopsin has been found. In this work, we show that protonat...

Full description

Saved in:
Bibliographic Details
Published in:Journal of photochemistry and photobiology. B, Biology Biology, 1997-09, Vol.40 (2), p.111-119
Main Authors: Ormos, Pál, Dér, András, Gergely, Csilla, Kruska, Sinisa, Száraz, Sándor, Tokaji, Zsolt
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Azide has previously been shown to have an effect on the photocycle of bacteriorhodopsin mutants. In appropriate mutants, both the proton release from the Schiff base and reprotonation are accelerated. However, no effect on native bacteriorhodopsin has been found. In this work, we show that protonated azide influences the photocycle of native bacteriorhodopsin, although to a lesser extent than in certain mutants. Several transitions are influenced by protonated azide: however, the overall effect is dominated by the modification of a single step. The M to N transition, i.e. reprotonation of the Schiff base, is accelerated by azide. As a consequence of this kinetic effect, the concentrations of several intermediates are influenced. The interpretation of the kinetic effect of azide involves an alternative parallel reaction path from the M form to the ground state in native bacteriorhodopsin. It is concluded that there are two routes of Schiff base reprotonation: via mediation by Asp-96 (in this case, the molecule returns to the ground state through the N intermediate; this is the generally accepted scenario): via Schiff base reprotonation directly from the external medium (in this case, the molecule returns from another M form to the ground state in one step).
ISSN:1011-1344
1873-2682
DOI:10.1016/S1011-1344(97)00035-3