Loading…
Using Object’s Contour, Form and Depth to Embed Recognition Capability into Industrial Robots
Robot vision systems can differentiate parts by pattern matching irrespective of part orientation and location. Some manufacturers offer 3D guidance systems using robust vision and laser systems so that a 3D programmed point can be repeated even if the part is moved varying its location, rotation an...
Saved in:
Published in: | Journal of applied research and technology 2013-02, Vol.11 (1), p.5-17 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Robot vision systems can differentiate parts by pattern matching irrespective of part orientation and location. Some manufacturers offer 3D guidance systems using robust vision and laser systems so that a 3D programmed point can be repeated even if the part is moved varying its location, rotation and orientation within the working space. Despite these developments, current industrial robots are still unable to recognize objects in a robust manner; that is, to distinguish an object among equally shaped objects taking into account not only the object’s contour but also its form and depth information, which is precisely the major contribution of this research. Our hypothesis establishes that it is possible to integrate a robust invariant object recognition capability into industrial robots by using image features from the object’s contour (boundary object information), its form (i.e., type of curvature or topographical surface information) and depth information (from stereo disparity maps). These features can be concatenated in order to form an invariant vector descriptor which is the input to an artificial neural network (ANN) for learning and recognition purposes. In this paper we present the recognition results under different working conditions using a KUKA KR16 industrial robot, which validated our approach.
Los sistemas de visión para robots pueden diferenciar partes mediante el apareamiento de patrones sin considerar su orientación o localización. Algunos fabricantes ofrecen sistemas de guiado 3D utilizando sistemas robustos de visión y laser, de tal forma que un punto programado puede ser repetido aún si la parte se ha movido cambiando su orientación, localización o rotación dentro del espacio de trabajo. A pesar de estos desarrollos, los robots industriales actuales son todavía incapaces de reconocer objetos de manera robusta; esto es, distinguir un objeto de entre varios objetos similares tomando información no solo de su contorno, sino también su forma y profundidad, lo que se constituye la contribución principal de esta investigación. Nuestra hipótesis establece que es posible integrar la capacidad de reconocimiento invariante de objetos en robots industriales mediante el uso de características de contorno del objeto (información de la frontera del objeto), su forma (i.e., tipo de curvatura o información topográfica de la superficie) e información de profundidad (mediante mapas estéreo de disparidad). Estas características pueden ser concatenadas |
---|---|
ISSN: | 1665-6423 |
DOI: | 10.1016/S1665-6423(13)71511-6 |