Loading…

Preparation and characterization of Ti0.7Sn0.3O2 as catalyst support for oxygen reduction reaction

Sn-doped TiO2 nanoparticles with high surface area of 125.7 m2·g-1 are synthesized via a simple one-step hydrothermai method and explored as the cathode catalyst support for proton exchange membrane fuel cells.The synthesized support materials are studied by X-ray diffraction analysis,energy dispers...

Full description

Saved in:
Bibliographic Details
Published in:Journal of energy chemistry 2014-05, Vol.23 (3), p.331-337
Main Authors: Gao, Yuan, Hou, Ming, Shao, Zhigang, Zhang, Changkun, Qin, Xiaoping, Yi, Baolian
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Sn-doped TiO2 nanoparticles with high surface area of 125.7 m2·g-1 are synthesized via a simple one-step hydrothermai method and explored as the cathode catalyst support for proton exchange membrane fuel cells.The synthesized support materials are studied by X-ray diffraction analysis,energy dispersive X-ray spectroscopy and transmission electron microscopy.It is found that the conductivity has been greatly improved by the addition of 30 mol%Sn and Pt nanoparticles are well dispersed on Ti0.7Sn0.3O2 support with an average size of 2.44 run.Electrochemical studies show that the Ti0.7Sn0.3O2 nanoparticles have excellent electrochemical stability under a high potential compared to Vulcan XC-72.The as-synthesized Pt/Ti0.7Sn0.3O2 exhibits high and stable electrocatalytic activity for the oxygen reduction reaction.The Pt/Ti0.7Sn0.3O2 catalyst reserves most of its electrochemically active surface area(ECA),and its half wave potential difference is 11 mV,which is lower than that of Pt/XC-72(36 mV) under 10 h potential hold at 1.4 V vs.NHE.In addition,the ECA degradation of Pt/Ti0.7Sn0.3O2is 1.9 times lower than commercial Pt/XC-72 under 500 potential cycles between 0.6 V and 1.2 V vs.NHE.Therefore,the as synthesized Pt/Ti0.7Sn0.3O2 can be considered as a promising alternative cathode,catalyst for proton exchange membrane fuel cells.
ISSN:2095-4956
DOI:10.1016/S2095-4956(14)60155-8