Loading…

Quantitative analysis of deuterium using the isotopic effect on quaternary 13C NMR chemical shifts

Quantitative analysis of specifically deuterated compounds can be achieved by a number of conventional methods, such as mass spectroscopy, or by quantifying the residual 1H NMR signals compared to signals from internal standards. However, site specific quantification using these methods becomes chal...

Full description

Saved in:
Bibliographic Details
Published in:Analytica chimica acta 2016-07, Vol.927, p.89-98
Main Authors: Darwish, Tamim A., Yepuri, Nageshwar Rao, Holden, Peter J., James, Michael
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Quantitative analysis of specifically deuterated compounds can be achieved by a number of conventional methods, such as mass spectroscopy, or by quantifying the residual 1H NMR signals compared to signals from internal standards. However, site specific quantification using these methods becomes challenging when dealing with non-specifically or randomly deuterated compounds that are produced by metal catalyzed hydrothermal reactions in D2O, one of the most convenient deuteration methods. In this study, deuterium-induced NMR isotope shifts of quaternary 13C resonances neighboring deuterated sites have been utilized to quantify the degree of isotope labeling of molecular sites in non-specifically deuterated molecules. By probing 13C NMR signals while decoupling both proton and deuterium nuclei, it is possible to resolve 13C resonances of the different isotopologues based on the isotopic shifts and the degree of deuteration of the carbon atoms. We demonstrate that in different isotopologues, the same quaternary carbon, neighboring partially deuterated carbon atoms, are affected to an equal extent by relaxation. Decoupling both nuclei (1H, 2H) resolves closely separated quaternary 13C signals of the different isotopologues, and allows their accurate integration and quantification under short relaxation delays (D1 = 1 s) and hence fast accumulative spectral acquisition. We have performed a number of approaches to quantify the deuterium content at different specific sites to demonstrate a convenient and generic analysis method for use in randomly deuterated molecules, or in cases of specifically deuterated molecules where back-exchange processes may take place during work up. The relative intensities of quaternary 13C {1H,2H} resonances are equal despite the different relaxation delays, allowing the relative abundance of the different deuterated isotopologues to be calculated using NMR fast acquisition time. [Display omitted]
ISSN:0003-2670
1873-4324
DOI:10.1016/j.aca.2016.05.003