Loading…
Theory of screw dislocation strengthening in random BCC alloys from dilute to “High-Entropy” alloys
[Display omitted] Random body-centered-cubic (BCC) “High Entropy” alloys are a new class of alloys, some having high strength and good ductility at room temperature and some having exceptional high-temperature strength. There are no theories of strengthening of screw dislocations in BCC metals that...
Saved in:
Published in: | Acta materialia 2020-01, Vol.182, p.144-162 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | [Display omitted]
Random body-centered-cubic (BCC) “High Entropy” alloys are a new class of alloys, some having high strength and good ductility at room temperature and some having exceptional high-temperature strength. There are no theories of strengthening of screw dislocations in BCC metals that span naturally from the dilute limit to the multi-component, non-dilute concentrations typical of the high-entropy domain. Here, such a theory is developed and validated. Unlike low-temperature elemental BCC metals and very dilute BCC alloys, strength is not controlled by the kink-pair nucleation mechanism. Rather, screw dislocations naturally adopt a kinked structure as the minimum total energy configuration in the field of random alloying atoms. The characteristic length and energy scales for the low-energy kinked screw dislocation are derived for random alloys, leading to a characteristic spacing of both kinks and cross-kinks that depends on the kink formation energy and a characteristic collective solute/screw dislocation interaction energy parameter. Glide motion of this initially-kinked screw dislocation occurs via Peierls-type motion, lateral kink glide, and failure of cross-kinks. All these features are observed in molecular dynamics simulations. The resulting strength versus temperature, strain rate, and composition is analytic. The theory is validated by comparison to experiments on non-dilute Fe-Si, Nb-Mo, Nb-W, and Ti-Nb-Zr-based high entropy alloys versus composition and temperature. The theory provides a framework for tailored design of new high-performance BCC alloys. |
---|---|
ISSN: | 1359-6454 1873-2453 |
DOI: | 10.1016/j.actamat.2019.10.007 |