Loading…

Solid solution and precipitation strengthening effects in basal slip, extension twinning and pyramidal slip in Mg-Zn alloys

A high-throughput methodology is proposed, based on the combination of diffusion couples and advanced nanomechanical testing methods, to directly measure alloying effects on the critical resolved shear stress (CRSS) of individual deformation modes in Mg alloys. The methodology is tested in Mg-Zn all...

Full description

Saved in:
Bibliographic Details
Published in:Acta materialia 2021-12, Vol.221, p.117374, Article 117374
Main Authors: Li, N., Wang, C., Monclús, M.A., Yang, L., Molina-Aldareguia, J.M.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A high-throughput methodology is proposed, based on the combination of diffusion couples and advanced nanomechanical testing methods, to directly measure alloying effects on the critical resolved shear stress (CRSS) of individual deformation modes in Mg alloys. The methodology is tested in Mg-Zn alloys by assessing the alloying effects, up to Zn contents of 2 at.%, on basal slip, extension twining and pyramidal slip in two metallurgical conditions: as-quenched, for which the Zn solute atoms remain homogenously dispersed in solid solution; and peak-aged, for which the Zn atoms form rod-shape β1′ (MgZn2) precipitates. A combined approach including micromechanical testing, transmission Kikuchi diffraction, and high-resolution transmission electron microscopy was performed to reveal the corresponding deformation mechanisms. It was found that the CRSS enhancement for basal slip and extension twinning by MgZn2 precipitates is considerably larger than the effect of Zn in solid solution, while the strengthening of pyramidal slip is similar in both cases. As a result, the anisotropy ratios remain high and similar to pure Mg in the solid solution strengthened Mg-Zn alloys. However, they are substantially reduced in precipitation strengthened Mg-Zn alloys.
ISSN:1359-6454
1873-2453
DOI:10.1016/j.actamat.2021.117374