Loading…

Modeling of porosity and grain size effects on mechanical behavior of additively manufactured structures

Additive manufacturing (AM) methods such as Aerosol Jet (AJ) printing allow the fabrication of structures via sintering of micro and/or nanoparticles, leading to microstructures that consist of various combinations of pore and grain sizes. It has been reported that AJ printed and sintered silver mic...

Full description

Saved in:
Bibliographic Details
Published in:Additive manufacturing 2021-02, Vol.38, p.101833, Article 101833
Main Authors: Hamid, Mehdi, Saleh, M. Sadeq, Afrouzian, Ali, Panat, Rahul, Zbib, Hussein M.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Additive manufacturing (AM) methods such as Aerosol Jet (AJ) printing allow the fabrication of structures via sintering of micro and/or nanoparticles, leading to microstructures that consist of various combinations of pore and grain sizes. It has been reported that AJ printed and sintered silver micropillars show an unusual behavior of high stiffness and high strain-to-failure for structures with high porosity and vice versa (Saleh et al. 2018 [1]). This behavior, however, is accompanied by the stiffer structures having smaller grain sizes and softer structures having larger grain sizes. To explain the physics of this behavior where a trade-off between hardening caused by size effects (grain refinement and gradients) and softening caused by porosity is expected to play a critical role, a multi-scale modeling approach is proposed in this paper. The model formulation consists of a continuum dislocation dynamics (CDD) framework, coupled with continuum plasticity and finite element analysis. The dislocation dynamics formulation is introduced into a user material subroutine and coupled with a finite element commercial solver, in this case, LS-DYNA, to solve the model in three-dimensional scale with the same size as the AM micropillars. The results from the model capture the general trends observed in compression tests of AM micropillars. In particular, it is shown that the grain size and dislocation density have a disproportionately higher influence over the mechanical deformation of metallic structures when compared to the porosity. These results show that the behavior of AM structures in the plastic regime is dominated by grain size effects rather than porosity. Some limitations of the model and possible future refinements are discussed. The paper provides an important analytical framework to model the mechanical behavior of AM structures with internal porosity in the plastic regime.
ISSN:2214-8604
2214-7810
DOI:10.1016/j.addma.2020.101833