Loading…

A deep reinforcement learning-based on-demand charging algorithm for wireless rechargeable sensor networks

Wireless rechargeable sensor networks are widely used in many fields. However, the limited battery capacity of sensor nodes hinders its development. With the help of wireless energy transfer technology, employing a mobile charger to charge sensor nodes wirelessly has become a promising technology fo...

Full description

Saved in:
Bibliographic Details
Published in:Ad hoc networks 2021-01, Vol.110, p.102278, Article 102278
Main Authors: Cao, Xianbo, Xu, Wenzheng, Liu, Xuxun, Peng, Jian, Liu, Tang
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Wireless rechargeable sensor networks are widely used in many fields. However, the limited battery capacity of sensor nodes hinders its development. With the help of wireless energy transfer technology, employing a mobile charger to charge sensor nodes wirelessly has become a promising technology for prolonging the lifetime of wireless sensor networks. Considering that the energy consumption rate varies significantly among sensors, we need a better way to model the charging demand of each sensor, such that the sensors are able to be charged multiple times in one charging tour. Therefore, time window is used to represent charging demand. In order to allow the mobile charger to respond to these charging demands in time and transfer more energy to the sensors, we introduce a new metric: charging reward. This new metric enables us to measure the quality of sensor charging. And then, we study the problem of how to schedule the mobile charger to replenish the energy supply of sensors, such that the sum of charging rewards collected by mobile charger on its charging tour is maximized. The sum of the collected charging reward is subject to the energy capacity constraint on the mobile charger and the charging time windows of all sensor nodes. We first prove that this problem is NP-hard. Due to the complexity of the problem, then deep reinforcement learning technique is exploited to obtain the moving path for mobile charger. Finally, experimental simulations are conducted to evaluate the performance of the proposed charging algorithm, and the results show that the proposed scheme is very promising.
ISSN:1570-8705
1570-8713
DOI:10.1016/j.adhoc.2020.102278