Loading…
Calculus of functors and model categories
The category of small covariant functors from simplicial sets to simplicial sets supports the projective model structure [B. Chorny, W.G. Dwyer, Homotopy theory of small diagrams over large categories, preprint, 2005]. In this paper we construct various localizations of the projective model structur...
Saved in:
Published in: | Advances in mathematics (New York. 1965) 2007-09, Vol.214 (1), p.92-115 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The category of small covariant functors from simplicial sets to simplicial sets supports the projective model structure [B. Chorny, W.G. Dwyer, Homotopy theory of small diagrams over large categories, preprint, 2005]. In this paper we construct various localizations of the projective model structure and also give a variant for functors from simplicial sets to spectra. We apply these model categories in the study of calculus of functors, namely for a classification of polynomial and homogeneous functors. In the
n-homogeneous model structure, the
nth derivative is a Quillen functor to the category of spectra with
Σ
n
-action. After taking into account only finitary functors—which may be done in two different ways—the above Quillen map becomes a Quillen equivalence. This improves the classification of finitary homogeneous functors by T.G. Goodwillie [T.G. Goodwillie, Calculus. III. Taylor series, Geom. Topol. 7 (2003) 645–711 (electronic)]. |
---|---|
ISSN: | 0001-8708 1090-2082 |
DOI: | 10.1016/j.aim.2006.10.009 |