Loading…

Calculus of functors and model categories

The category of small covariant functors from simplicial sets to simplicial sets supports the projective model structure [B. Chorny, W.G. Dwyer, Homotopy theory of small diagrams over large categories, preprint, 2005]. In this paper we construct various localizations of the projective model structur...

Full description

Saved in:
Bibliographic Details
Published in:Advances in mathematics (New York. 1965) 2007-09, Vol.214 (1), p.92-115
Main Authors: Biedermann, Georg, Chorny, Boris, Röndigs, Oliver
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The category of small covariant functors from simplicial sets to simplicial sets supports the projective model structure [B. Chorny, W.G. Dwyer, Homotopy theory of small diagrams over large categories, preprint, 2005]. In this paper we construct various localizations of the projective model structure and also give a variant for functors from simplicial sets to spectra. We apply these model categories in the study of calculus of functors, namely for a classification of polynomial and homogeneous functors. In the n-homogeneous model structure, the nth derivative is a Quillen functor to the category of spectra with Σ n -action. After taking into account only finitary functors—which may be done in two different ways—the above Quillen map becomes a Quillen equivalence. This improves the classification of finitary homogeneous functors by T.G. Goodwillie [T.G. Goodwillie, Calculus. III. Taylor series, Geom. Topol. 7 (2003) 645–711 (electronic)].
ISSN:0001-8708
1090-2082
DOI:10.1016/j.aim.2006.10.009