Loading…

The six operations in equivariant motivic homotopy theory

We introduce and study the homotopy theory of motivic spaces and spectra parametrized by quotient stacks [X/G], where G is a linearly reductive linear algebraic group. We extend to this equivariant setting the main foundational results of motivic homotopy theory: the (unstable) purity and gluing the...

Full description

Saved in:
Bibliographic Details
Published in:Advances in mathematics (New York. 1965) 2017-01, Vol.305, p.197-279
Main Author: Hoyois, Marc
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We introduce and study the homotopy theory of motivic spaces and spectra parametrized by quotient stacks [X/G], where G is a linearly reductive linear algebraic group. We extend to this equivariant setting the main foundational results of motivic homotopy theory: the (unstable) purity and gluing theorems of Morel–Voevodsky and the (stable) ambidexterity theorem of Ayoub. Our proof of the latter is different than Ayoub's and is of interest even when G is trivial. Using these results, we construct a formalism of six operations for equivariant motivic spectra, and we deduce that any cohomology theory for G-schemes that is represented by an absolute motivic spectrum satisfies descent for the cdh topology.
ISSN:0001-8708
1090-2082
DOI:10.1016/j.aim.2016.09.031