Loading…
When are multidegrees positive?
Let k be an arbitrary field, P=Pkm1×k⋯×kPkmp be a multiprojective space over k, and X⊆P be a closed subscheme of P. We provide necessary and sufficient conditions for the positivity of the multidegrees of X. As a consequence of our methods, we show that when X is irreducible, the support of multideg...
Saved in:
Published in: | Advances in mathematics (New York. 1965) 2020-11, Vol.374, p.107382, Article 107382 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Let k be an arbitrary field, P=Pkm1×k⋯×kPkmp be a multiprojective space over k, and X⊆P be a closed subscheme of P. We provide necessary and sufficient conditions for the positivity of the multidegrees of X. As a consequence of our methods, we show that when X is irreducible, the support of multidegrees forms a discrete algebraic polymatroid. In algebraic terms, we characterize the positivity of the mixed multiplicities of a standard multigraded algebra over an Artinian local ring, and we apply this to the positivity of mixed multiplicities of ideals. Furthermore, we use our results to recover several results in the literature in the context of combinatorial algebraic geometry. |
---|---|
ISSN: | 0001-8708 1090-2082 |
DOI: | 10.1016/j.aim.2020.107382 |