Loading…

Phosphorus starvation and luxury uptake in green microalgae revisited

Phosphorus (P) is central to storing and transferring energy and information in living cells, including those of microalgae. Many microalgal species dwelling in low P environments are naturally equipped to take up and store P whenever it becomes available through a complex phenomenon known as “luxur...

Full description

Saved in:
Bibliographic Details
Published in:Algal research (Amsterdam) 2019-11, Vol.43, p.101651, Article 101651
Main Authors: Solovchenko, Alexei, Khozin-Goldberg, Inna, Selyakh, Irina, Semenova, Larisa, Ismagulova, Tatiana, Lukyanov, Alexandr, Mamedov, Ilgar, Vinogradova, Elizaveta, Karpova, Olga, Konyukhov, Ivan, Vasilieva, Svetlana, Mojzes, Peter, Dijkema, Cor, Vecherskaya, Margarita, Zvyagin, Ivan, Nedbal, Ladislav, Gorelova, Olga
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Phosphorus (P) is central to storing and transferring energy and information in living cells, including those of microalgae. Many microalgal species dwelling in low P environments are naturally equipped to take up and store P whenever it becomes available through a complex phenomenon known as “luxury P uptake.” Its research is required for better understanding of the nutrient geochemical cycles in aquatic environments but also for biotechnological applications such as sequestration of nutrients from wastewater and production of algal fertilizers. Here, we report on our recent insights into luxury P uptake and polyphosphate formation originating from physiological, ultrastructural, and transcriptomic evidence. The cultures pre-starved of P and re-fed with inorganic phosphate (Pi) exhibited a bi-phasic kinetics of Pi uptake comprising fast (1–2 h after re-feeding) and slow (1–3 d after re-feeding) phases. The rate of Pi uptake in the fast phase was ca. 10 times higher than in the slow phase with an opposite trend shown for the cell division rate. The transient peak of polyphosphate accumulation was determined 2–4 h after re-feeding and coincided with the period of slow cell division and fast Pi uptake. In this phase, the microalgal cells reached the highest P content (up to 5% of dry cell weight). The P re-feeding also reversed the characteristic changes in cell lipids induced by P starvation, namely increase in the major membrane glycolipid (DGDG/MGDG) ratio and betaine lipids. These changes were reversed upon Pi re-feeding of the starved culture. Electron microscopy revealed the ordered organization of vacuolar polyphosphate indicative of the possible involvement of an enzyme (complex) in their synthesis. A candidate gene encoding a protein similar to the vacuolar transport chaperone (VTC) protein, featuring an expression pattern corresponding to polyphosphate accumulation, was revealed. Implications of the findings for efficient biocapture of phosphorus are discussed. •P-starved Chlorella vulgaris cells re-fed with Pi transiently accumulated polyphosphate.•Polyphosphate accumulation is co-determined by Pi uptake and cell division rates.•P starvation reduces photosynthesis and causes replacement of phospholipids with sulfo- and betaine lipids.•Vacuolar PolyP granules display a highly ordered ultrastructural organization.•P starvation and luxury uptake stages show distinct gene expression patterns.
ISSN:2211-9264
2211-9264
DOI:10.1016/j.algal.2019.101651