Loading…
An operator splitting technique for an unconditionally stable difference method for a linear three space dimensional hyperbolic equation with variable coefficients
We report a new three-step operator splitting method of O( k 2+ h 2) for the difference solution of linear hyperbolic equation u tt +2 α( x, y, z, t) u t + β 2( x, y, z, t) u= A( x, y, z, t) u xx + B( x, y, z, t) u yy + C( x, y, z, t) u zz + f( x, y, z, t) subject to appropriate initial and Dirichle...
Saved in:
Published in: | Applied mathematics and computation 2005-03, Vol.162 (2), p.549-557 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We report a new three-step operator splitting method of O(
k
2+
h
2) for the difference solution of linear hyperbolic equation
u
tt
+2
α(
x,
y,
z,
t)
u
t
+
β
2(
x,
y,
z,
t)
u=
A(
x,
y,
z,
t)
u
xx
+
B(
x,
y,
z,
t)
u
yy
+
C(
x,
y,
z,
t)
u
zz
+
f(
x,
y,
z,
t) subject to appropriate initial and Dirichlet boundary conditions, where
α(
x,
y,
z,
t)>
β(
x,
y,
z,
t)>0 and
A(
x,
y,
z,
t)>0,
B(
x,
y,
z,
t)>0,
C(
x,
y,
z,
t)>0. The method is applicable to singular problems and stable for all choices of
h>0 and
k>0. The resulting system of algebraic equations is solved by using a tri-diagonal solver. Computational results are provided to demonstrate the viability of the new method. |
---|---|
ISSN: | 0096-3003 1873-5649 |
DOI: | 10.1016/j.amc.2003.12.135 |