Loading…
A matrix-based approach to searching colored paths in a weighted colored multidigraph
An algebraic approach to finding all edge-weighted-colored paths within a weighted colored multidigraph is developed. Generally, the adjacency matrix represents a simple digraph and determines all paths between any two vertices, and is not readily extendable to colored multidigraphs. To bridge the g...
Saved in:
Published in: | Applied mathematics and computation 2009-09, Vol.215 (1), p.353-366 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | An algebraic approach to finding all edge-weighted-colored paths within a weighted colored multidigraph is developed. Generally, the adjacency matrix represents a simple digraph and determines all paths between any two vertices, and is not readily extendable to colored multidigraphs. To bridge the gap, a conversion function is proposed to transform the original problem of searching edge-colored paths in a colored multidigraph to a standard problem of finding paths in a simple digraph. Moreover, edge weights can be used to represent some preference attribute. Its potentially wide realm of applicability is illustrated by a case study: status quo analysis in the graph model for conflict resolution. The explicit matrix function is more convenient than other graphical representations for computer implementation and for adapting to other applications. Additionally, the algebraic approach reveals the relationship between a colored multidigraph and a simple digraph, thereby providing new insights into algebraic graph theory. |
---|---|
ISSN: | 0096-3003 1873-5649 |
DOI: | 10.1016/j.amc.2009.04.086 |