Loading…
Discontinuous Galerkin finite element scheme for a conserved higher-order traffic flow model by exploring Riemann solvers
The discontinuous Galerkin (DG) scheme is used to solve a conserved higher-order (CHO) traffic flow model by exploring several Riemann solvers. The second-order accurate DG scheme is found to be adequate in that the accuracy is comparable to the weighted essentially non-oscillatory (WENO) scheme wit...
Saved in:
Published in: | Applied mathematics and computation 2014-10, Vol.244, p.567-576 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The discontinuous Galerkin (DG) scheme is used to solve a conserved higher-order (CHO) traffic flow model by exploring several Riemann solvers. The second-order accurate DG scheme is found to be adequate in that the accuracy is comparable to the weighted essentially non-oscillatory (WENO) scheme with fifth-order accuracy and much better than the scheme with first-order accuracy in resolving a wide moving jam with a shock profile. Moreover, it considerably reduces the differences between the proposed solvers in generating numerical viscosities or errors. Thus, this scheme can maintain high efficiency when a simple solver is adopted. The scheme could be extended to solve more complex problems, such as those related to traffic flow in a network. |
---|---|
ISSN: | 0096-3003 1873-5649 |
DOI: | 10.1016/j.amc.2014.07.002 |