Loading…
Approximate methods for stochastic eigenvalue problems
We consider the discretization and solution of eigenvalue problems of elliptic operators with random coefficients. For solving the resulting systems of equations we present a new and efficient spectral inverse iteration based on the stochastic Galerkin approach with respect to a polynomial chaos bas...
Saved in:
Published in: | Applied mathematics and computation 2015-09, Vol.267, p.664-681 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We consider the discretization and solution of eigenvalue problems of elliptic operators with random coefficients. For solving the resulting systems of equations we present a new and efficient spectral inverse iteration based on the stochastic Galerkin approach with respect to a polynomial chaos basis. The curse of dimensionality inherent in normalization over parameter spaces is avoided by a solution of a non-linear system of equations defining the Galerkin coefficients. For reference we also present an algorithm for adaptive stochastic collocation. Functionality of the algorithms is demonstrated by applying them on four examples of a given model problem. Convergence of the Galerkin-based method is analyzed and the results are tested against the collocated reference solutions and theoretical predictions. |
---|---|
ISSN: | 0096-3003 1873-5649 |
DOI: | 10.1016/j.amc.2014.12.112 |