Loading…
Floquet theory based on new periodicity concept for hybrid systems involving q-difference equations
Using the new periodicity concept based on shifts, we construct a unified Floquet theory for homogeneous and nonhomogeneous hybrid periodic systems on domains having continuous, discrete or hybrid structure. New periodicity concept based on shifts enables the construction of Floquet theory on hybrid...
Saved in:
Published in: | Applied mathematics and computation 2016-01, Vol.273, p.1208-1233 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Using the new periodicity concept based on shifts, we construct a unified Floquet theory for homogeneous and nonhomogeneous hybrid periodic systems on domains having continuous, discrete or hybrid structure. New periodicity concept based on shifts enables the construction of Floquet theory on hybrid domains that are not necessarily additive periodic. This makes periodicity and stability analysis of hybrid periodic systems possible on non-additive domains. In particular, this new approach can be useful to know more about Floquet theory for linear q-difference systems defined on qZ¯:={qn:n∈Z}∪{0} where q > 1. By constructing the solution of matrix exponential equation we establish a canonical Floquet decomposition theorem. Determining the relation between Floquet multipliers and Floquet exponents, we give a spectral mapping theorem on closed subsets of reals that are periodic in shifts. Finally, we show how the constructed theory can be utilized for the stability analysis of dynamic systems on periodic time scales in shifts. |
---|---|
ISSN: | 0096-3003 1873-5649 |
DOI: | 10.1016/j.amc.2015.08.124 |