Loading…
Minimizing Kirchhoff index among graphs with a given vertex bipartiteness
The resistance distance between any two vertices of a graph G is defined as the effective resistance between them if each edge of G is replaced by a unit resistor. The Kirchhoff index Kf(G) is the sum of the resistance distances between all the pairs of vertices in G. The vertex bipartiteness vb of...
Saved in:
Published in: | Applied mathematics and computation 2016-12, Vol.291, p.84-88 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The resistance distance between any two vertices of a graph G is defined as the effective resistance between them if each edge of G is replaced by a unit resistor. The Kirchhoff index Kf(G) is the sum of the resistance distances between all the pairs of vertices in G. The vertex bipartiteness vb of a graph G is the minimum number of vertices whose deletion from G results in a bipartite graph. In this paper, we characterize the graph having the minimum Kf(G) values among graphs with a fixed number n of vertices and fixed vertex bipartiteness, 1≤vb≤n−3. |
---|---|
ISSN: | 0096-3003 1873-5649 |
DOI: | 10.1016/j.amc.2016.06.017 |