Loading…
Neighbor sum distinguishing total chromatic number of planar graphs
Let G = (V(G), E(G)) be a graph and ϕ be a proper k-total coloring of G. Set fϕ(v)=∑uv∈E(G)ϕ(uv)+ϕ(v), for each v ∈ V(G). If fϕ(u) ≠ fϕ(v) for each edge uv ∈ E(G), the coloring ϕ is called a k-neighbor sum distinguishing total coloring of G. The smallest integer k in such a coloring of G is the neig...
Saved in:
Published in: | Applied mathematics and computation 2018-09, Vol.332, p.189-196 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Let G = (V(G), E(G)) be a graph and ϕ be a proper k-total coloring of G. Set fϕ(v)=∑uv∈E(G)ϕ(uv)+ϕ(v), for each v ∈ V(G). If fϕ(u) ≠ fϕ(v) for each edge uv ∈ E(G), the coloring ϕ is called a k-neighbor sum distinguishing total coloring of G. The smallest integer k in such a coloring of G is the neighbor sum distinguishing total chromatic number, denoted by χΣ″(G). In this paper, by using the famous Combinatorial Nullstellensatz, we determine χΣ″(G) for any planar graph G with Δ(G) ≥ 13. |
---|---|
ISSN: | 0096-3003 1873-5649 |
DOI: | 10.1016/j.amc.2018.03.013 |