Loading…
A reduction algorithm for reconstructing periodic Jacobi matrices in Minkowski spaces
The periodic Jacobi inverse eigenvalue problem concerns the reconstruction of a periodic Jacobi matrix from prescribed spectral data. In Minkowski spaces, with a given signature operator H=diag(1,1,…,1,−1), the corresponding matrix is a periodic pseudo-Jacobi matrix. The inverse eigenvalue problem f...
Saved in:
Published in: | Applied mathematics and computation 2022-04, Vol.419, p.126853, Article 126853 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The periodic Jacobi inverse eigenvalue problem concerns the reconstruction of a periodic Jacobi matrix from prescribed spectral data. In Minkowski spaces, with a given signature operator H=diag(1,1,…,1,−1), the corresponding matrix is a periodic pseudo-Jacobi matrix. The inverse eigenvalue problem for such matrices consists in the reconstruction of pseudo-Jacobi matrices, with the same order and signature operator H. In this paper we solve this problem by applying Sylvester’s identity and Householder transformation. The solution number and the corresponding reconstruction algorithm are here exhibited, and illustrative numerical examples are given. Comparing this approach with the known Lanczos algorithm for reconstructing pseudo-Jacobi matrices, our method is shown to be more stable and effective. |
---|---|
ISSN: | 0096-3003 1873-5649 |
DOI: | 10.1016/j.amc.2021.126853 |