Loading…
Global asymptotical behavior of the Lengyel–Epstein reaction–diffusion system
The Lengyel–Epstein reaction–diffusion system of the CIMA reaction is revisited. We construct a Lyapunov function to show that the constant equilibrium solution is globally asymptotically stable when the feeding rate of iodide is small. We also show that for small spatial domains, all solutions even...
Saved in:
Published in: | Applied mathematics letters 2009, Vol.22 (1), p.52-55 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The Lengyel–Epstein reaction–diffusion system of the CIMA reaction is revisited. We construct a Lyapunov function to show that the constant equilibrium solution is globally asymptotically stable when the feeding rate of iodide is small. We also show that for small spatial domains, all solutions eventually converge to a spatially homogeneous and time-periodic solution. |
---|---|
ISSN: | 0893-9659 1873-5452 |
DOI: | 10.1016/j.aml.2008.02.003 |