Loading…

Fekete–Szegö problem for starlike and convex functions of complex order

For nonzero complex b let F n ( b ) denote the class of normalized univalent functions f satisfying Re  [ 1 + ( z ( D n f ) ′ ( z ) / D n f ( z ) − 1 ) / b ] > 0 in the unit disk U , where D n f denotes the Ruscheweyh derivative of f . Sharp bounds for the Fekete–Szegö functional | a 3 − μ a 2 2...

Full description

Saved in:
Bibliographic Details
Published in:Applied mathematics letters 2010-07, Vol.23 (7), p.777-782
Main Authors: Kanas, S., Darwish, H.E.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:For nonzero complex b let F n ( b ) denote the class of normalized univalent functions f satisfying Re  [ 1 + ( z ( D n f ) ′ ( z ) / D n f ( z ) − 1 ) / b ] > 0 in the unit disk U , where D n f denotes the Ruscheweyh derivative of f . Sharp bounds for the Fekete–Szegö functional | a 3 − μ a 2 2 | are obtained.
ISSN:0893-9659
1873-5452
DOI:10.1016/j.aml.2010.03.008