Loading…
Fekete–Szegö problem for starlike and convex functions of complex order
For nonzero complex b let F n ( b ) denote the class of normalized univalent functions f satisfying Re [ 1 + ( z ( D n f ) ′ ( z ) / D n f ( z ) − 1 ) / b ] > 0 in the unit disk U , where D n f denotes the Ruscheweyh derivative of f . Sharp bounds for the Fekete–Szegö functional | a 3 − μ a 2 2...
Saved in:
Published in: | Applied mathematics letters 2010-07, Vol.23 (7), p.777-782 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | For nonzero complex
b
let
F
n
(
b
)
denote the class of normalized univalent functions
f
satisfying
Re
[
1
+
(
z
(
D
n
f
)
′
(
z
)
/
D
n
f
(
z
)
−
1
)
/
b
]
>
0
in the unit disk
U
, where
D
n
f
denotes the Ruscheweyh derivative of
f
. Sharp bounds for the Fekete–Szegö functional
|
a
3
−
μ
a
2
2
|
are obtained. |
---|---|
ISSN: | 0893-9659 1873-5452 |
DOI: | 10.1016/j.aml.2010.03.008 |