Loading…
Synthesis of p-aminophenol from p-nitrophenol over nano-sized nickel catalysts
p-Aminophenol was synthesized by catalytic hydrogenation of p-nitrophenol on nano-sized nickel catalysts prepared by a chemical reduction method from aqueous solutions. The catalysts were characterized by XRD, EDS, SEM, HRTEM and Mastersizer 2000. Analysis results show that as-prepared catalysts are...
Saved in:
Published in: | Applied catalysis. A, General General, 2004-12, Vol.277 (1), p.259-264 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | p-Aminophenol was synthesized by catalytic hydrogenation of
p-nitrophenol on nano-sized nickel catalysts prepared by a chemical reduction method from aqueous solutions. The catalysts were characterized by XRD, EDS, SEM, HRTEM and Mastersizer 2000. Analysis results show that as-prepared catalysts are pure f.c.c. nickel and are prone to aggregation; the average particle size of nickel catalysts is 57
nm and there are high-density defects on particle surfaces. In hydrogenation reactions of
p-nitrophenol, the hydrogenation rate is zero-order dependent on nitro aromatics and increases with increasing of hydrogen pressure. Compared with commercial Raney Ni, catalytic properties (activity, selectivity, and stability) of the as-prepared nickel are superior. The reason proposed for higher catalytic activity of nano-sized nickel is a combination effect of the small particle size and high-density surface defects. The partial sintering of nano-sized nickel might lead to the deactivation of the catalytic activity of nano-sized nickel. |
---|---|
ISSN: | 0926-860X 1873-3875 |
DOI: | 10.1016/j.apcata.2004.09.018 |