Loading…
Optimal expansion planning of electric vehicle fast charging stations
With the penetration rate of electric vehicles (EVs) increasing exponentially, the high charging load may cause new issues in future power system, e.g., voltage drop. Besides, EV Charging stations (EVCSs) located in inadequate places exacerbate these issues, causing charging demand to concentrate on...
Saved in:
Published in: | Applied energy 2023-07, Vol.342, p.121116, Article 121116 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | With the penetration rate of electric vehicles (EVs) increasing exponentially, the high charging load may cause new issues in future power system, e.g., voltage drop. Besides, EV Charging stations (EVCSs) located in inadequate places exacerbate these issues, causing charging demand to concentrate on a few EVCSs. Therefore, the charging demand estimation for EVCSs and their strategic placement is essential for the system operators and charging station owner. The paper proposes a method for optimal EVCS placement to achieve charging demand dispersion considering not only installation cost but also drivers’ preferences and existing charging stations. To optimally place EVCSs, this work first estimates the charging demand of existing EVCSs based on kernel density estimation. The charging demand for new and existing EVCSs is modeled using the nearest neighbor search to consider drivers’ preference for the nearer station. Next, the EVCS placement problem is formulated to minimize the peak charging demand using integer nonlinear programming, a non-convex problem. To tackle this non-convex problem, a minimax genetic algorithm is proposed, which is genetic algorithm combined with game theory. The validity and effectiveness of the proposed method are demonstrated through simulations based on real data from Jeju Island. After applying the proposed method, new EVCS placement is determined by analyzing the tradeoff between the degree of charging demand dispersion and installation cost. As a result, the charging demand concentrated on a particular EVCS is suitably dispersed.
•The drivers’ behavior characteristic is modeled via the nearest neighbor search.•The kernel density estimation is adopted to estimate the charging demand.•The EVCSPP problem is formulated to disperse the charging demand for EVCSs.•The EVCSPP problem is solved via the GA combined with the minimax game theory.•The charging demand dispersion is significantly improved using the proposed method. |
---|---|
ISSN: | 0306-2619 1872-9118 |
DOI: | 10.1016/j.apenergy.2023.121116 |