Loading…
The use of the stochastic arithmetic to estimate the value of interpolation polynomial with optimal degree
One of the considerable discussions in data interpolation is to find the optimal number of data which minimizes the error of the interpolation polynomial. In this paper, first the theorems corresponding to the equidistant nodes and the roots of the Chebyshev polynomials are proved in order to estima...
Saved in:
Published in: | Applied numerical mathematics 2004-09, Vol.50 (3), p.279-290 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | One of the considerable discussions in data interpolation is to find the optimal number of data which minimizes the error of the interpolation polynomial. In this paper, first the theorems corresponding to the equidistant nodes and the roots of the Chebyshev polynomials are proved in order to estimate the accuracy of the interpolation polynomial, when the number of data increases. Based on these theorems, then we show that by using a perturbation method based on the CESTAC method, it is possible to find the optimal degree of the interpolation polynomial. The results of numerical experiments are presented. |
---|---|
ISSN: | 0168-9274 1873-5460 |
DOI: | 10.1016/j.apnum.2004.01.003 |