Loading…

Effects of arbuscular mycorrhizal inoculation on the growth of Elsholtzia splendens and Zea mays and the activities of phosphatase and urease in a multi-metal-contaminated soil under unsterilized conditions

A pot culture experiment was carried out to study the effects of arbuscular mycorrhizal (AM) inoculation on the growth of Elsholtzia splendens and Zea mays and the activities of phosphatase and urease in a soil contaminated with Cu, Zn, Pb and Cd. Two AM fungal inocula, MI containing Glomus caledoni...

Full description

Saved in:
Bibliographic Details
Published in:Applied soil ecology : a section of Agriculture, ecosystems & environment ecosystems & environment, 2006, Vol.31 (1), p.110-119
Main Authors: Wang, Fa-yuan, Lin, Xian-gui, Yin, Rui, Wu, Long-hua
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A pot culture experiment was carried out to study the effects of arbuscular mycorrhizal (AM) inoculation on the growth of Elsholtzia splendens and Zea mays and the activities of phosphatase and urease in a soil contaminated with Cu, Zn, Pb and Cd. Two AM fungal inocula, MI containing Glomus caledonium and MII containing Gigaspora margarita, Gigaspora decipens, Scutellospora gilmori, Acaulospora spp. and Glomus spp., were applied to the soil. The plants of E. splendens and Z. mays were harvested after 24 and 10 weeks of growth, respectively. Both plant species had a similar trend in mycorrhizal colonization rates, MI > MII > control. Shoot and root biomass of Z. mays was increased by MI, while not affected significantly by MII. Although both MI and MII increased plant dry weight of E. splendens, MII was more effective. Mycorrhizal dependency (MD) with MI and MII was 14.8 and 33.5, respectively for E. splendens, and 11.0 and 0.9, respectively for Z. mays. Both inocula increased the activities of phosphatase and urease in the soils of E. splendens and Z. mays, but MI was more effective than MII for urease, while MII more effective than MI for phosphatase. Although the mechanisms involved in these responses are not clear, AM fungal inoculum may be important and used for the phytoremediation of heavy metal contaminated soils, but both inoculum type and host species must be considered.
ISSN:0929-1393
1873-0272
DOI:10.1016/j.apsoil.2005.03.002