Loading…
Numerical simulations of high frequency transverse pulsed jet injection into a supersonic crossflow
The design of scramjet engines includes the investigation of minimally intrusive fuel delivery mechanisms which maximize jet fuel penetration and mixing. In subsonic crossflows it has been shown that pulsation of gaseous jets can improve jet penetration and mixing in comparison to unforced (steady)...
Saved in:
Published in: | Aerospace science and technology 2020-08, Vol.103, p.105908, Article 105908 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The design of scramjet engines includes the investigation of minimally intrusive fuel delivery mechanisms which maximize jet fuel penetration and mixing. In subsonic crossflows it has been shown that pulsation of gaseous jets can improve jet penetration and mixing in comparison to unforced (steady) jets. Extensive investigations have already explored subsonic flow regimes for pulsed injection; however, only a limited number of experimental and numerical studies have been performed which investigate pulsed jets in a supersonic crossflow. This study presents fully three-dimensional (3D) scale-resolving simulations of steady and a sinusoidally pulsed jet (f = 16 kHz) using a wall modeled large eddy simulation approach to capture large-scale vortical structures in turbulent jet in supersonic crossflow and pulsed jet in supersonic crossflow. A block-structured, fully 3D turbulent scale resolving finite volume model was used to explore physics simulations of steady and pulsed jets in a supersonic crossflow. The results of the simulations presented show that sinusoidal pulsation of a gaseous hydrogen jet improves penetration and mixing over the steady jet when the momentum flux ratios are equivalent. |
---|---|
ISSN: | 1270-9638 1626-3219 |
DOI: | 10.1016/j.ast.2020.105908 |