Loading…
Tensor fluctuations in the early universe
In standard inflationary cosmology, scalar and tensor perturbations grew as the Universe expanded and froze when their wavelengths exceeded the Hubble horizon, producing a tell-tale signature in the fluctuation spectrum and amplitude of the cosmic microwave background (CMB). But there are now very g...
Saved in:
Published in: | Astroparticle physics 2023-10, Vol.152, p.102876, Article 102876 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In standard inflationary cosmology, scalar and tensor perturbations grew as the Universe expanded and froze when their wavelengths exceeded the Hubble horizon, producing a tell-tale signature in the fluctuation spectrum and amplitude of the cosmic microwave background (CMB). But there are now very good reasons to examine whether structure formation could also have begun via the seeding of quantum fluctuations in a non-inflationary field. In this Letter, we study and compare the scalar and tensor modes produced in these two scenarios, and demonstrate that upcoming observations to measure the B-mode polarization of the CMB may be able to differentiate between them. Whereas both scalar and tensor modes should be observable if the field was inflationary, only scalar modes would be present in the CMB if it were not. Should gravity be purely classical, however, the tensor modes would have avoided canonical quantization in all cases, resulting in unmeasurably weak gravitational waves. A non-detection of B-mode polarization would thus not completely rule out inflation. |
---|---|
ISSN: | 0927-6505 1873-2852 |
DOI: | 10.1016/j.astropartphys.2023.102876 |