Loading…
Enhanced light absorption due to the mixing state of black carbon in fresh biomass burning emissions
A lack of information on the radiative effects of refractory black carbon (rBC) emitted from biomass burning is a significant gap in our understanding of climate change. A custom-made combustion chamber was used to simulate the open burning of crop residues and investigate the impacts of rBC size an...
Saved in:
Published in: | Atmospheric environment (1994) 2018-05, Vol.180, p.184-191 |
---|---|
Main Authors: | , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | A lack of information on the radiative effects of refractory black carbon (rBC) emitted from biomass burning is a significant gap in our understanding of climate change. A custom-made combustion chamber was used to simulate the open burning of crop residues and investigate the impacts of rBC size and mixing state on the particles' optical properties. Average rBC mass median diameters ranged from 141 to 162 nm for the rBC produced from different types of crop residues. The number fraction of thickly-coated rBC varied from 53 to 64%, suggesting that a majority of the freshly emitted rBC were internally mixed. By comparing the result of observed mass absorption cross-section to that calculated with Mie theory, large light absorption enhancement factors (1.7–1.9) were found for coated particles relative to uncoated cores. These effects were strongly positively correlated with the percentage of coated particles but independent of rBC core size. We suggest that rBC from open biomass burning may have strong impact on air pollution and radiative forcing immediately after their production.
[Display omitted]
•Insignificant correlations were found between rBC MMDs and combustion conditions.•The fraction of thickly-coated rBC was anti-correlated with combustion conditions.•Large absorption enhancements were found in fresh biomass-burning emissions. |
---|---|
ISSN: | 1352-2310 1873-2844 |
DOI: | 10.1016/j.atmosenv.2018.02.049 |