Loading…
Factors affecting the simulated trajectory and intensification of Tropical Cyclone Yasi (2011)
This study investigates the sensitivity of the simulated trajectory, intensification, and forward speed of Tropical Cyclone Yasi to initial conditions, physical parameterizations, and sea surface temperatures. Yasi was a category 5 storm that made landfall in Queensland, Australia in February 2011....
Saved in:
Published in: | Atmospheric research 2017-09, Vol.194, p.27-42 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This study investigates the sensitivity of the simulated trajectory, intensification, and forward speed of Tropical Cyclone Yasi to initial conditions, physical parameterizations, and sea surface temperatures. Yasi was a category 5 storm that made landfall in Queensland, Australia in February 2011. A series of simulations were performed using WRF-ARW v3.4.1 driven by ERA-Interim data at the lateral boundaries. To assess these simulations, a new simple skill score is devised to summarize the deviation from observed conditions at landfall. The results demonstrate the sensitivity to initial condition resolution and the need for a new initialization dataset. Ensemble testing of physics parameterizations revealed strong sensitivity to cumulus schemes, with a trade-off between trajectory and intensity accuracy. The Tiedtke scheme produces an accurate trajectory evolution and landfall location. The Kain Fritch scheme is associated with larger errors in trajectory due to a less active shallow convection over the ocean, leading to warmer temperatures at the 700mb level and a stronger, more poleward steering flow. However, the Kain Fritsch scheme produces more accurate intensities and translation speeds. Tiedtke-derived intensities were weaker due to suppression of deep convection by active shallow convection. Accurate representation of the sea surface temperature through correcting a newly discovered SST lag in reanalysis data or increasing resolution of SST data can improve the simulation. Higher resolution increases relative vorticity and intensity. However, the sea surface boundary had a more pronounced effect on the simulation with the Tiedtke scheme due to its moisture convergence trigger and active shallow convection over the tropical ocean.
•Simulation skill index is developed.•Initializing with a high resolution analysis greatly improves intensity.•Cumulus parameterization leads to trade off in accurate trajectory or intensity.•Higher resolution and accurate SSTs can improve simulation skill.•Simulation with Tiedtke cumulus scheme is more sensitive to SST boundary. |
---|---|
ISSN: | 0169-8095 1873-2895 |
DOI: | 10.1016/j.atmosres.2017.04.002 |