Loading…

Barrier Lyapunov Functions for the control of output-constrained nonlinear systems

In this paper, we present control designs for single-input single-output (SISO) nonlinear systems in strict feedback form with an output constraint. To prevent constraint violation, we employ a Barrier Lyapunov Function, which grows to infinity when its arguments approach some limits. By ensuring bo...

Full description

Saved in:
Bibliographic Details
Published in:Automatica (Oxford) 2009-04, Vol.45 (4), p.918-927
Main Authors: Tee, Keng Peng, Ge, Shuzhi Sam, Tay, Eng Hock
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In this paper, we present control designs for single-input single-output (SISO) nonlinear systems in strict feedback form with an output constraint. To prevent constraint violation, we employ a Barrier Lyapunov Function, which grows to infinity when its arguments approach some limits. By ensuring boundedness of the Barrier Lyapunov Function in the closed loop, we ensure that those limits are not transgressed. Besides the nominal case where full knowledge of the plant is available, we also tackle scenarios wherein parametric uncertainties are present. Asymptotic tracking is achieved without violation of the constraint, and all closed loop signals remain bounded, under a mild condition on the initial output. Furthermore, we explore the use of an Asymmetric Barrier Lyapunov Function as a generalized approach that relaxes the requirements on the initial conditions. We also compare our control with one that is based on a Quadratic Lyapunov Function, and we show that our control requires less restrictive initial conditions. A numerical example is provided to illustrate the performance of the proposed control.
ISSN:0005-1098
1873-2836
DOI:10.1016/j.automatica.2008.11.017