Loading…
Worst-case error bounds for the super-twisting differentiator in presence of measurement noise
The super-twisting differentiator, also known as the first-order robust exact differentiator, is a well known sliding mode differentiator. In the absence of measurement noise, it achieves exact reconstruction of the time derivative of a function with bounded second derivative. This note proposes an...
Saved in:
Published in: | Automatica (Oxford) 2023-06, Vol.152, p.110983, Article 110983 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The super-twisting differentiator, also known as the first-order robust exact differentiator, is a well known sliding mode differentiator. In the absence of measurement noise, it achieves exact reconstruction of the time derivative of a function with bounded second derivative. This note proposes an upper bound for its worst-case differentiation error in the presence of bounded measurement noise, based on a novel Lipschitz continuous Lyapunov function. It is shown that the bound can be made arbitrarily tight and never exceeds the true worst-case differentiation error by more than a factor of two. A numerical simulation illustrates the results and also demonstrates the non-conservativeness of the proposed bound. |
---|---|
ISSN: | 0005-1098 1873-2836 |
DOI: | 10.1016/j.automatica.2023.110983 |