Loading…

Potential structure/function relationships of predicted secondary structural elements of tau

The microtubule-associated protein tau is believed to be a natively unfolded molecule with virtually no secondary structure. However, this protein self-associates into filamentous forms in various neurodegenerative diseases. Since these filamentous forms show a remarkable degree of higher order due...

Full description

Saved in:
Bibliographic Details
Published in:Biochimica et biophysica acta 2005-01, Vol.1739 (2), p.140-149
Main Author: Gamblin, T. Chris
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The microtubule-associated protein tau is believed to be a natively unfolded molecule with virtually no secondary structure. However, this protein self-associates into filamentous forms in various neurodegenerative diseases. Since these filamentous forms show a remarkable degree of higher order due to their regular widths and periodicity, it is widely speculated that tau does contain secondary structures that come together to form tertiary and quaternary structures in the filamentous form. The purpose of this review is to use the primary sequence of tau along with predictive methods in an effort to identify potential secondary structural elements that could be involved in its normal and pathological functions. Although there are few predicted structural elements in the tau molecule, these analyses should lead to a better understanding of the structure/function relationships that regulate the behavior of tau.
ISSN:0925-4439
0006-3002
1879-260X
DOI:10.1016/j.bbadis.2004.08.013