Loading…

Identification of an atypical peptidyl-prolyl cis/trans isomerase from trypanosomatids

The parvulin family of peptidyl-prolyl cis/trans isomerases (PPIases) catalyzes the cis/trans isomerization of the peptide bonds preceding Pro residues. Eukaryotic parvulin-type PPIases have been shown to be involved in cell proliferation and cell cycle progression. Here we present the biochemical a...

Full description

Saved in:
Bibliographic Details
Published in:Biochimica et biophysica acta 2010-09, Vol.1803 (9), p.1028-1037
Main Authors: Erben, Esteban D., Valguarnera, Ezequiel, Nardelli, Sheila, Chung, Janete, Daum, Sebastian, Potenza, Mariana, Schenkman, Sergio, Téllez-Iñón, María T.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The parvulin family of peptidyl-prolyl cis/trans isomerases (PPIases) catalyzes the cis/trans isomerization of the peptide bonds preceding Pro residues. Eukaryotic parvulin-type PPIases have been shown to be involved in cell proliferation and cell cycle progression. Here we present the biochemical and molecular characterization of a novel multi-domain parvulin-type PPIase from the human pathogenic Trypanosoma cruzi, annotated as TcPar45. Like most other parvulins, Par45 has an N-terminal extension, but, in contrast to human Pin1, it contains a forkhead-associated domain (FHA) instead of a WW domain at the N-terminal end. Par45 shows a strong preference for a substrate with the basic Arg residue preceding Pro (Suc-Ala-Arg-Pro-Phe-NH-Np: k cat/ K M = 97.1 /M/s), like that found for human Par14. In contrast to human Pin1, but similarly to Par14, Par45 does not accelerate the cis/trans interconversion of acidic substrates containing Glu-Pro bonds. It is preferentially located in the parasite nucleus. Single RNA interference (RNAi)-mediated knock-down showed that there was a growth inhibition in procyclic Trypanosoma brucei cells. These results identify Par45 as a phosphorylation-independent parvulin required for normal cell proliferation in a unicellular eukaryotic cell.
ISSN:0167-4889
0006-3002
1879-2596
DOI:10.1016/j.bbamcr.2010.05.006