Loading…

Transfer learning techniques for medical image analysis: A review

Medical imaging is a useful tool for disease detection and diagnostic imaging technology has enabled early diagnosis of medical conditions. Manual image analysis methods are labor-intense and they are susceptible to intra as well as inter-observer variability. Automated medical image analysis techni...

Full description

Saved in:
Bibliographic Details
Published in:Biocybernetics and biomedical engineering 2022-01, Vol.42 (1), p.79-107
Main Authors: Kora, Padmavathi, Ooi, Chui Ping, Faust, Oliver, Raghavendra, U., Gudigar, Anjan, Chan, Wai Yee, Meenakshi, K., Swaraja, K., Plawiak, Pawel, Rajendra Acharya, U.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Medical imaging is a useful tool for disease detection and diagnostic imaging technology has enabled early diagnosis of medical conditions. Manual image analysis methods are labor-intense and they are susceptible to intra as well as inter-observer variability. Automated medical image analysis techniques can overcome these limitations. In this review, we investigated Transfer Learning (TL) architectures for automated medical image analysis. We discovered that TL has been applied to a wide range of medical imaging tasks, such as segmentation, object identification, disease categorization, severity grading, to name a few. We could establish that TL provides high quality decision support and requires less training data when compared to traditional deep learning methods. These advantageous properties arise from the fact that TL models have already been trained on large generic datasets and a task specific dataset is only used to customize the model. This eliminates the need to train the models from scratch. Our review shows that AlexNet, ResNet, VGGNet, and GoogleNet are the most widely used TL models for medical image analysis. We found that these models can understand medical images, and the customization refines the ability, making these TL models useful tools for medical image analysis.
ISSN:0208-5216
DOI:10.1016/j.bbe.2021.11.004