Loading…
Organic semiconducting polymer amphiphile for near-infrared-II light-triggered phototheranostics
Development of near-infrared-II (NIR-II) light responsive nano-agents with high photothermal stability, high photothermal conversion efficiency (PCE), and excellent biocompatibility for photoacoustic (PA) imaging-guided photothermal therapy (PTT) is of tremendous significance. In spite of the superi...
Saved in:
Published in: | Biomaterials 2020-02, Vol.232, p.119684, Article 119684 |
---|---|
Main Authors: | , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Development of near-infrared-II (NIR-II) light responsive nano-agents with high photothermal stability, high photothermal conversion efficiency (PCE), and excellent biocompatibility for photoacoustic (PA) imaging-guided photothermal therapy (PTT) is of tremendous significance. In spite of the superiority of organic semiconducting polymer nanoparticles (OSPNs) in PA imaging-guided PTT, the limited absorption in the first NIR (NIR-I) window and metastable nanostructure of OSPNs resulting from commonly used preparation methods based on nanoprecipitation or reprecipitation compromise their in vivo phototheranostic performance. Herein we design and synthesize a novel NIR-II absorbing organic semiconducting polymer amphiphile (OSPA) to enhance the structural stability of OSPNs. With prominent optical properties, low toxicity, and a suitable size, OSPA not only efficiently labels and kills cancer cells under NIR-II irradiation but also accumulates at the tumor of living mice upon intravenous injection, allowing efficient NIR-II light-triggered phototheranostics toward tumor. The developed OSPA has promising potential for fabricating multifunctional nanoplatforms to enable multimodal theranostics. |
---|---|
ISSN: | 0142-9612 1878-5905 |
DOI: | 10.1016/j.biomaterials.2019.119684 |