Loading…
Maximal function on Musielak–Orlicz spaces and generalized Lebesgue spaces
We consider the Hardy–Littlewood maximal operator M on Musielak–Orlicz Spaces L φ ( R d ) . We give a necessary condition for the continuity of M on L φ ( R d ) which generalizes the concept of Muckenhoupt classes. In the special case of generalized Lebesgue spaces L p ( ⋅ ) ( R d ) we show that thi...
Saved in:
Published in: | Bulletin des sciences mathématiques 2005-09, Vol.129 (8), p.657-700 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We consider the Hardy–Littlewood maximal operator
M on Musielak–Orlicz Spaces
L
φ
(
R
d
)
. We give a necessary condition for the continuity of
M on
L
φ
(
R
d
)
which generalizes the concept of Muckenhoupt classes. In the special case of generalized Lebesgue spaces
L
p
(
⋅
)
(
R
d
)
we show that this condition is also sufficient. Moreover, we show that the condition is “left-open” in the sense that not only
M but also
M
q
is continuous for some
q
>
1
, where
M
q
f
=
(
M
(
|
f
|
q
)
)
1
q
.
On considère l'opérateur maximal Hardy–Littlewood sur les espaces Musielak–Orlicz
L
φ
(
R
d
)
. Une condition nécessaire est donnée pour la continuité de
M sur
L
φ
(
R
d
)
, qui généralise la conception des classes Muckenhaupt. Pour le cas spécial des espaces Lebesgues généralisés
L
p
(
⋅
)
(
R
d
)
on justifie que cette condition est aussi suffisante. En plus, on prouve que la condition est “left-open” au sens que non seulement
M mais aussi
M
q
est continu pour certes
q
>
1
, où
M
q
f
=
(
M
(
|
f
|
q
)
)
1
q
. |
---|---|
ISSN: | 0007-4497 1952-4773 |
DOI: | 10.1016/j.bulsci.2003.10.003 |