Loading…

Maximal function on Musielak–Orlicz spaces and generalized Lebesgue spaces

We consider the Hardy–Littlewood maximal operator M on Musielak–Orlicz Spaces L φ ( R d ) . We give a necessary condition for the continuity of M on L φ ( R d ) which generalizes the concept of Muckenhoupt classes. In the special case of generalized Lebesgue spaces L p ( ⋅ ) ( R d ) we show that thi...

Full description

Saved in:
Bibliographic Details
Published in:Bulletin des sciences mathématiques 2005-09, Vol.129 (8), p.657-700
Main Author: Diening, Lars
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We consider the Hardy–Littlewood maximal operator M on Musielak–Orlicz Spaces L φ ( R d ) . We give a necessary condition for the continuity of M on L φ ( R d ) which generalizes the concept of Muckenhoupt classes. In the special case of generalized Lebesgue spaces L p ( ⋅ ) ( R d ) we show that this condition is also sufficient. Moreover, we show that the condition is “left-open” in the sense that not only M but also M q is continuous for some q > 1 , where M q f = ( M ( | f | q ) ) 1 q . On considère l'opérateur maximal Hardy–Littlewood sur les espaces Musielak–Orlicz L φ ( R d ) . Une condition nécessaire est donnée pour la continuité de M sur L φ ( R d ) , qui généralise la conception des classes Muckenhaupt. Pour le cas spécial des espaces Lebesgues généralisés L p ( ⋅ ) ( R d ) on justifie que cette condition est aussi suffisante. En plus, on prouve que la condition est “left-open” au sens que non seulement M mais aussi M q est continu pour certes q > 1 , où M q f = ( M ( | f | q ) ) 1 q .
ISSN:0007-4497
1952-4773
DOI:10.1016/j.bulsci.2003.10.003