Loading…
Holomorphic cohomology groups on compact Kähler complex spaces
Let ( X , O X ) be a compact (reduced) complex space, bimeromorphic to a Kähler manifold. The singular cohomology groups H q ( X , C ) carry a mixed Hodge structure. In particular they carry a weight filtration W − l H q ( X , C ) ( l = 0 , … , q ), and the graded quotients W − l H q ( X , C ) W − l...
Saved in:
Published in: | Bulletin des sciences mathématiques 2010-10, Vol.134 (7), p.705-723 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Let
(
X
,
O
X
)
be a compact (reduced) complex space, bimeromorphic to a Kähler manifold. The singular cohomology groups
H
q
(
X
,
C
)
carry a mixed Hodge structure. In particular they carry a weight filtration
W
−
l
H
q
(
X
,
C
)
(
l
=
0
,
…
,
q
), and the graded quotients
W
−
l
H
q
(
X
,
C
)
W
−
l
−
1
H
q
(
X
,
C
)
have a direct sum decomposition into holomorphic invariants as
⊕
r
+
s
=
q
−
l
(
W
−
l
H
q
(
X
,
C
)
W
−
l
−
1
H
q
(
X
,
C
)
)
(
r
,
s
)
. Here we investigate the relationships between the above invariants for
r
=
0
and the cohomology groups
H
q
(
X
,
O
˜
X
)
, where
O
˜
X
is the sheaf of weakly holomorphic functions on
X. Moreover, according to the smooth case, we characterize the topological line bundles
L on
X such that the class of
c
1
(
L
)
in
W
0
H
2
(
X
,
C
)
W
−
1
H
2
(
X
,
C
)
has pure type
(
1
,
1
)
.
Soit
(
X
,
O
X
)
a espace complexe compact biméromorphe a une variété Kählerienne. Les groupes de cohomologie singulière
H
q
(
X
,
C
)
portent une structure de Hodge mixte. En particulier ils portent une filtration poids
W
−
l
H
q
(
X
,
C
)
(
l
=
0
,
…
,
q
), et les quotients gradués se décomposent en somme directe d'invariants holomorphes :
W
−
l
H
q
(
X
,
C
)
W
−
l
−
1
H
q
(
X
,
C
)
=
⊕
r
+
s
=
q
−
l
(
W
−
l
H
q
(
X
,
C
)
W
−
l
−
1
H
q
(
X
,
C
)
)
(
r
,
s
)
. Nous étudions les relations entre ces invariants pour
r
=
0
et les groupes de cohomologie
H
q
(
X
,
O
˜
X
)
, oú
O
˜
X
est le faisceau des fonctions faiblement holomorphes sur
X. En outre, comme dans le cas lisse, nous caractérisons les fibrés topologiques
L on
X tels que
c
1
(
L
)
dans
W
0
H
2
(
X
,
C
)
W
−
1
H
2
(
X
,
C
)
soit de type
(
1
,
1
)
. |
---|---|
ISSN: | 0007-4497 1952-4773 |
DOI: | 10.1016/j.bulsci.2010.06.004 |