Loading…

Holomorphic cohomology groups on compact Kähler complex spaces

Let ( X , O X ) be a compact (reduced) complex space, bimeromorphic to a Kähler manifold. The singular cohomology groups H q ( X , C ) carry a mixed Hodge structure. In particular they carry a weight filtration W − l H q ( X , C ) ( l = 0 , … , q ), and the graded quotients W − l H q ( X , C ) W − l...

Full description

Saved in:
Bibliographic Details
Published in:Bulletin des sciences mathématiques 2010-10, Vol.134 (7), p.705-723
Main Authors: Ancona, Vincenzo, Gaveau, Bernard
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Let ( X , O X ) be a compact (reduced) complex space, bimeromorphic to a Kähler manifold. The singular cohomology groups H q ( X , C ) carry a mixed Hodge structure. In particular they carry a weight filtration W − l H q ( X , C ) ( l = 0 , … , q ), and the graded quotients W − l H q ( X , C ) W − l − 1 H q ( X , C ) have a direct sum decomposition into holomorphic invariants as ⊕ r + s = q − l ( W − l H q ( X , C ) W − l − 1 H q ( X , C ) ) ( r , s ) . Here we investigate the relationships between the above invariants for r = 0 and the cohomology groups H q ( X , O ˜ X ) , where O ˜ X is the sheaf of weakly holomorphic functions on X. Moreover, according to the smooth case, we characterize the topological line bundles L on X such that the class of c 1 ( L ) in W 0 H 2 ( X , C ) W − 1 H 2 ( X , C ) has pure type ( 1 , 1 ) . Soit ( X , O X ) a espace complexe compact biméromorphe a une variété Kählerienne. Les groupes de cohomologie singulière H q ( X , C ) portent une structure de Hodge mixte. En particulier ils portent une filtration poids W − l H q ( X , C ) ( l = 0 , … , q ), et les quotients gradués se décomposent en somme directe d'invariants holomorphes : W − l H q ( X , C ) W − l − 1 H q ( X , C ) = ⊕ r + s = q − l ( W − l H q ( X , C ) W − l − 1 H q ( X , C ) ) ( r , s ) . Nous étudions les relations entre ces invariants pour r = 0 et les groupes de cohomologie H q ( X , O ˜ X ) , oú O ˜ X est le faisceau des fonctions faiblement holomorphes sur X. En outre, comme dans le cas lisse, nous caractérisons les fibrés topologiques L on X tels que c 1 ( L ) dans W 0 H 2 ( X , C ) W − 1 H 2 ( X , C ) soit de type ( 1 , 1 ) .
ISSN:0007-4497
1952-4773
DOI:10.1016/j.bulsci.2010.06.004