Loading…

Schauder estimates for degenerate stable Kolmogorov equations

We provide here global Schauder-type estimates for a chain of integro-partial differential equations (IPDE) driven by a degenerate stable Ornstein-Uhlenbeck operator possibly perturbed by a deterministic drift, when the coefficients lie in some suitable anisotropic Hölder spaces. Our approach mainly...

Full description

Saved in:
Bibliographic Details
Published in:Bulletin des sciences mathématiques 2020-09, Vol.162, p.102885, Article 102885
Main Author: Marino, Lorenzo
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We provide here global Schauder-type estimates for a chain of integro-partial differential equations (IPDE) driven by a degenerate stable Ornstein-Uhlenbeck operator possibly perturbed by a deterministic drift, when the coefficients lie in some suitable anisotropic Hölder spaces. Our approach mainly relies on a perturbative method based on forward parametrix expansions and, due to the low regularizing properties on the degenerate variables and to some integrability constraints linked to the stability index, it also exploits duality results between appropriate Besov Spaces. In particular, our method also applies in some super-critical cases. Thanks to these estimates, we show in addition the well-posedness of the considered IPDE in a suitable functional space.
ISSN:0007-4497
1952-4773
DOI:10.1016/j.bulsci.2020.102885